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Abstract. We use Monte Carlo methods to study a self-avoiding walk model of copolymers, with
a periodic sequence of comonomers, adsorbing at a planar surface. The monomers are of two
types, A and B, and only A monomers interact with the surface. We investigate how the location of
the adsorption transition depends on the comonomer sequence and make comparisons with some
rigorous results. We also investigate a directed-walk model (in two dimensions) and show that this
model can be used to give insight into the behaviour of the more natural self-avoiding-walk model.

1. Introduction

The statistical mechanics of polymer adsorption is an important problem, both because of the
practical importance of the phenomenon and because of interest in the nature of the adsorption
transition. One of the standard models of homopolymer adsorption is a self-avoiding walk on
a lattice (such as the simple cubic lattice, Z3) which begins at the origin, is confined to the
half-space z � 0 and where the vertices of the walk have a short-range attractive interaction
with the surface z = 0. Hammersley et al (1982) showed that the model has a phase transition,
and the location and nature of the transition have been studied by many different methods. For
a review see De’Bell and Lookman (1993).

Recently, there has been considerable interest in the adsorption of both random and
periodic copolymers. There are several recent papers on the theory of copolymer adsorption
(see, for instance, Sommer and Daoud 1995, Sommer et al 1996, Whittington 1998a) and also
some Monte Carlo results (Wang et al 1993). In the self-avoiding-walk model of copolymer
adsorption the vertices of an n-step self-avoiding walk are numbered i = 0, 1, 2, . . . , n and
vertices are coloured A or B to represent two different types of comonomer. Only one
comonomer (A, say) has an attractive interaction with the surface and vertex 0 is coloured
A. Given a sequence χ of comonomers (i.e. a particular colouring of the vertices of the walk)
one can ask for the number c+

n(vA|χ) of n-edge walks with vA +1 A-vertices in the plane z = 0,
and define the partition function

Zn(α|χ) =
∑
vA

c+
n(vA|χ) eαvA . (1.1)

The free energy is

κn(α|χ) = n−1 log Zn(α|χ). (1.2)

If the sequence χ is random one is interested in the existence and behaviour of the limit
limn→∞〈κn(α|χ)〉, where the average 〈· · ·〉 is taken over all random sequences χ from
the appropriate probability distribution (Garel et al 1989, Gutman and Chakraborty 1994,
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Bolthausen and den Hollander 1997, Orlandini et al 1999). If the sequence χ is periodic (e.g.
an alternating copolymer) then one is concerned with the behaviour of the limit

κ(α|χ) = lim
n→∞ κn(α|χ). (1.3)

This limiting free energy will be singular for some αc(χ) > 0 and we are interested in the χ

dependence of this adsorption threshold. We shall write the repeating sequence as a shorthand
for χ . For instance, we shall write AAB as a shorthand for the sequence AABAABAAB . . .

and AB as a shorthand for the strictly alternating sequence ABABAB . . . . We shall number
the vertices of the walk i = 0, 1, 2, . . . , n and normally regard vertex 0 as being an A-vertex.
For the case of the simple cubic lattice let the location of the adsorption transition for the
homopolymer, poly-A, be α0. Then it is known rigorously (Whittington 1998a) that

3α0/2 � αc(AB) � 3α0 (1.4)

and

αc(ABp) � 2α0 (1.5)

for all p � 2. Nothing is known rigorously about the location of the transition for AAB or
AABB (except the rather obvious result that αc is at least as large as α0). In the next section we
present Monte Carlo estimates of αc for AB, AAB, ABB, AAAB and ABBB. In addition,
we argue that the crossover exponent φ is close to 1

2 for each of these cases, as it is for the
homopolymer (Hegger and Grassberger 1994).

In section 3 we present corresponding results for a directed-walk model of adsorption in
two dimensions. We consider walks on the square lattice, confined to the half-space y � 0
with no steps in the negative x-direction. This model was first discussed in the context
of homopolymer adsorption by Privman et al (1988), and solved using transfer matrices.
Whittington (1998b) gave a combinatorial solution and extended this to the alternating
copolymer AB. We further extend this approach to handle the sequences AAB, ABB, AABB,
AAAB and ABBB. For each of these cases it is possible to derive the location of the transition
exactly, and we discuss the trends in these values, and compare with our Monte Carlo estimates
for the self-avoiding-walk problem.

2. Monte Carlo approach and results

In this section we present a Monte Carlo study of the adsorption of the periodic copolymers
AAAB, AAB, AB, ABB and ABBB, modelled as coloured self-avoiding walks on the simple
cubic lattice, and compare our results with those for the homopolymer and for block copolymers
in which half of the polymer is composed of A units and half is composed of B units. In each
case we consider self-avoiding walks on the simple cubic lattice Z3, starting at the origin and
confined to the half space z � 0. We generate a correlated sample of walks using a Metropolis
sampling scheme, with the trial moves being proposed by a pivot algorithm coupled with
local moves. To speed up convergence we use a multiple Markov chain scheme (Geyer 1991)
in which we run a set of Markov chains in parallel at different values of α with swapping
of configurations between adjacent values of α. For details see Geyer (1991) and Tesi et al
(1996). This method requires that convergence should be rapid at one of the α values, and we
achieved this by always including α = 0 in the multiple Markov chain runs.

For each of the five cases which we have investigated we have calculated the mean number
of A-vertices in the surface, normalized by the number of edges in the walk,

〈vA〉
n

= ∂κn(α|χ)

∂α
(2.1)
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Figure 1. The mean number of vertices of type A in the plane, per edge, as a function of α, for
n = 400. An/2Bn/2 ( �), AAAB (+), AAB (�), AB (×), ABB (◦) and ABBB (∗).

Figure 2. The α dependence of the reduced heat capacity Cn(α|χ) for n = 400. The homopolymer
A (◦), the block copolymers Bn/2An/2 (+) and An/2Bn/2 (×), and the periodic cases AAB (•),
AB (�) and ABB (�).

the ‘heat capacity’ Cn(α|χ) = [〈v2
A〉 − 〈vA〉2]/n and metric properties such as the mean z-

component of the vertices of the walk. These are all estimated for a range of values of α from
α = 0 to values far inside the adsorbed regime and for a number of values of n.

In figure 1 we show the α dependence of 〈vA〉/n for the diblock copolymer An/2Bn/2, and
the periodic cases AAAB, AAB, AB, ABB and ABBB for n = 400. At large values of α

the values of 〈vA〉/n are ordered as one would expect from the relative proportions of A and
B units. This remains true at small α except that the values for the block copolymer increase
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Figure 3. The α dependence of Cn(α|AB) for n = 50, 100, 200, 400, 800 and 1000.

much more rapidly than those of AB (although they have the same proportion of A units) and
the curve for the block copolymer is above the curves for other sequences, including those that
have a larger fraction of A units. This is consistent with the rigorously known result that the
critical value of α for the block copolymer is the same as for the homopolymer, and therefore
less than that for the AB case (Whittington 1998a) and, as we shall see, for other periodic
cases. In figure 2 we show the α dependence of Cn(α|χ) for the homopolymer, the block
copolymers An/2Bn/2 and Bn/2An/2, and for the three periodic cases AAB, AB and ABB, for
n = 400. The locations of the heat capacity peaks indicate that the block copolymers adsorb
at the lowest value of α, followed by AAB, AB and ABB in that order. Of course, the peak
positions vary with n and, in figure 3, we show the α dependence of Cn(α|AB) for a range of
n values. The peaks increase in height and decrease in width as n increases. In addition, the
peaks are asymmetric, rising more rapidly than they fall, consistent with the rigorous result
(Whittington 1998a) that the free energy limn→∞ κn(α|AB) is independent of α for values of
α below the adsorption transition.

We examined the distribution of values of 〈vA/n〉 as a function of α and found no evidence
for a first-order transition. We therefore conclude that the transition is second order, as is
thought to be the case for homopolymer adsorption. The way in which the peak positions
approach the location of the adsorption transition (as n → ∞) is controlled by the crossover
exponent φ. For the homopolymer, numerical estimates of φ range from about 0.5 to 0.59 (see
De’Bell and Lookman (1993) for a review, and Hegger and Grassberger (1994) for a more
recent study). In fact, Hegger and Grassberger (1994) have suggested that the value might be
exactly 1

2 . We have attempted to estimate the value of φ from our homopolymer data by fitting
the heights, hn, of the heat capacity peaks at various values of n to the functional form

hn = An2φ−1(1 + B/
√

n). (2.2)

We estimate that φ is roughly equal to 0.55, but emphasize that this is only a rough estimate.
Certainly our data do not rule out a value as low as 0.5, especially in view of the uncertainty
in the correction term in (2.2). It is natural to expect that the crossover exponent will have
the same value for these copolymer models as for the homopolymer and, to test this, we
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Figure 4. The locations of the heat capacity peaks plotted against 1/
√

n for AAAB (�), AAB

(�), AB (∗), ABB (×) and ABBB (+).

Figure 5. The α dependence of the mean z-coordinate of vertices of the walk for n = 400.
An/2Bn/2 (•), Bn/2An/2 (�), AAAB (+), AAB (�), AB (×), ABB (◦) and ABBB (∗).

have plotted the location of the heat capacity peak αc(n|χ) for AAAB, AAB, AB, ABB

and ABBB against n−1/2 (implicitly assuming that φ = 1
2 ) in figure 4. The values for the

homopolymer are also given for comparison. Changing the assumed value of φ by a small
amount does not materially alter the general nature of this figure, and our results are not
sufficiently precise to enable us to make an accurate estimate of φ, but the linearity in this
figure suggests that φ is close to 1

2 for all these models. Assuming this value of φ we can
make a rough estimate of the location of the adsorption transition for these five cases. Our
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estimates are αc(AAAB) = 0.39 ± 0.02, αc(AAB) = 0.475 ± 0.02, αc(AB) = 0.57 ± 0.05,
αc(ABB) = 0.8 ± 0.04 and αc(ABBB) = 1.0 ± 0.07.

In figure 5 we compare the α dependence of 〈z〉, the mean z-coordinate of the vertices of
the walk, for several periodic copolymers and for the two-diblock copolymers An/2Bn/2 and
Bn/2An/2, for n = 400. In each case the value of 〈z〉 drops dramatically as α is increased
and, for the periodic cases, the decrease occurs at larger values of α as the proportion of B

units increases. This is consistent with our results for locations of the heat capacity peaks.
The decrease occurs at a smaller value of α for the two block copolymers, consistent with
the adsorption transition being at the same location as that of the homopolymer (Whittington
1998a). The value of 〈z〉 at large α becomes very small for the periodic cases, but seems to be
asymptotic to values well away from zero for the block copolymers. In the case of the block
copolymers the B units extend well away from the surface, into the solution, even at large α.
This asymptotic value is larger for An/2Bn/2 than for Bn/2An/2 since the first vertex is fixed in
the surface and the B units can only form a loop in the latter case, whereas they can form a
tail in the former case.

3. A directed-walk model

In this section we consider self-avoiding walks on the square lattice Z2 which start at the origin,
are confined to the half-space y � 0 and have no steps in the negative x-direction. In fact, we
concentrate on the subset of these walks which also have their last vertex in the line y = 0.
One can show (by the methods of Hammersley et al (1982)) that fixing the last vertex in y = 0
does not affect the limiting free energy and, in particular, that the location of the adsorption
transition is the same for these walks as for walks where the last vertex is not constrained to
have zero y-coordinate.

For a given (periodic) colouring χ let an(v|χ) be the number of such walks having n edges
and v + 1 vertices of type A in the line y = 0. (Recall that the zeroth vertex is always of type
A.) Let a

j
n(v|χ) be the corresponding number of walks with the first j steps in the positive

x-direction and which either have exactly j steps (the case j = n) or which have the (j + 1)th
step in the positive y-direction (the case j < n). Define the generating function

H(x, y|χ) =
∑
v,n

an(v|χ)xvyn (3.1)

where x = eα , and the partial generating functions

hj (x, y|χ) =
∑
v,n

aj
n(v|χ)xvyn. (3.2)

The strategy is to derive equations relating H and the partial generating functions hj and to
solve these to find H . The thermodynamics of the system can then be derived from the shape
of the boundary of convergence, y = yc(x), of H . For small x the boundary of convergence
is always the line y = √

2 − 1, but at larger x the boundary depends on the model. The point
(x∗, y∗) at which these two branches of the boundary of convergence meet gives the singular
point in the free energy, and hence the location of the adsorption transition. The details of the
calculations are given in the appendix.

We summarize the locations of the transition for various copolymers in table 1. The
fact that x∗(A) < x∗(AAAB) < x∗(AAB) < · · · , increasing as the proportion of B units
increases, is not surprising. We expect that x∗(ApB) will decrease as p increases, and x∗(ABp)

will increase as p increases, and it would be interesting to establish these results for arbitrary
integral p. We note that x∗(AAAB) < x∗(A)4/3, x∗(AAB) < x∗(A)3/2, etc, so the locations of
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Table 1. Location of the adsorption transition for the directed model.

Repeat x∗ αc

A 1.492 . . . 0.400 . . .

AAAB 1.687 . . . 0.522 . . .

AAB 1.802 . . . 0.589 . . .

AABB 2.101 . . . 0.742 . . .

AB 2.194 . . . 0.785 . . .

ABB 3.078 . . . 1.124 . . .

ABBB 4.007 . . . 1.388 . . .

the adsorption transition for these copolymers are related to the location for the homopolymer
in non-trivial ways. Similarly, x∗(AABB) < x∗(AB). One would expect that x∗(ApBp),
would decrease as p increases, though this has not been established. Of course, if p = �εn�,
for any positive value of ε, the copolymer is a block copolymer and x∗ will be equal to x∗(A),
the value for the homopolymer.

In principle, it should be possible to extract exact values of critical exponents such as φ

and γ s
11 from our results for these models. The exponent γ s

11 can be defined as the limit

γ s
11 = − lim

y→y∗−
log H(x∗, y)

log(y∗ − y)
(3.3)

and the crossover exponent can be computed as

1/φ = lim
x→x∗+

log log(yc(x
∗)/yc(x))

log log(x/x∗)
. (3.4)

In practice, it is difficult to compute the necessary limits analytically, even with the help of
Maple. Instead we have investigated the behaviour of the free energy as x approaches x∗

along the critical curve, and we estimate that φ is between 0.499 and 0.5 for the ABBB case.
Similarly, it seems clear that γ s

11 differs from 1
2 by no more than one part in 5000 for the ABBB

case. We have also estimated φ for the other periodic copolymers and in every case φ seems
to differ from 1

2 by no more than one part in 500. We regard this as excellent evidence that
both φ and γ s

11 are exactly 1
2 , as is the case for the homopolymer and alternating copolymer

cases (Whittington 1998b).

4. Discussion

We have used multiple-Markov-chain Monte Carlo methods to investigate a self-avoiding
walk model of the adsorption of periodic copolymers of two comonomers. Only one of the
two comonomers (monomer A) is attracted to the surface. For each of the periodic sequences
investigated we have calculated the mean number of A monomers in the surface, and its variance
(i.e. the heat capacity) as a function of the strength of the interaction with the surface and the
length of the polymer. We have also calculated metric properties such as the mean distance
of the monomers from the surface. We have compared the behaviour of these quantities for
different periodic sequences, and also compared with the behaviour of the homopolymer and
two-diblock copolymers.

In addition we considered a directed-walk model in two dimensions. For a variety of
comonomer sequences this model is exactly solvable and we have identified the location of
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Figure 6. Estimates of the value of αc(χ) for the self-avoiding-walk model plotted against the
corresponding values for the directed-walk model, for various periodic copolymers.

the adsorption transition for several comonomer sequences. We would expect that there would
be a strong positive correlation between the locations of the adsorption transition in the two
models and we plot αc(χ) for the self-avoiding-walk model against αc(χ) for the directed-walk
model, for various periodic copolymers, in figure 6. The correlation is very strong, suggesting
that calculations on the directed-walk model for other periodic copolymers, together with this
graph, would give a good indication of the value of αc(χ) for the corresponding self-avoiding-
walk model.
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Appendix

In this appendix we give details of the calculations for the directed-walk model on the square
lattice. The calculations are somewhat different depending on the length of the repeat unit and
we consider repeat units of length 3 and 4 separately.

Repeat units of length 3

We consider the AAB case in some detail and then write down the corresponding equations
for ABB. We drop the dependence on χ when this is obvious. Since hj+3(x, y|AAB) =
x2y3hj (x, y|AAB) we have

H(x, y|AAB) = h0 + h1 + h2 + x2y3h0 + x2y3h1 + · · ·
= (h0 + h1 + h2)(1 + x2y3 + x4y6 + · · ·)
= (h0 + h1 + h2)/(1 − x2y3) (A.1)
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provided that |x2y3| < 1. If we consider the terms contributing to h0(x, y|AAB) we see that
we have a point, a set of loops (i.e. walks which start and end in y = 0 but have no intermediate
vertices in this line) and configurations which begin with a loop and then continue in some way.
If we write ln for the number of n-edge loops then the generating function L(y) = ∑

n lnyn is
given by (Whittington 1998b)

L(y) = 1 − y − y2 − y3 −
√

y6 + 2y5 − y4 − y2 − 2y + 1

2y
. (A.2)

However, because of the three-fold periodicity loops with different values of n have different
contributions depending on whether n is divisible by 3 or leaves a remainder of 1 or 2 when
divided by 3. Define

Lm(y) =
∑
k�0

lm+3kym+3k (A.3)

for m = 1, 2 and 3 (remembering that l1 = l2 = 0). We can calculate Lm as follows. Let

ω = − 1
2 + 1

2 i
√

3 (A.4)

then

L1(y) = (1 + ω)L(ω2y) − L(ωy) − ωL(y)

(1 − ω)2
(A.5)

L2(y) = L1(y) −
[

L(ωy) − L(ω2y)

ω(1 − ω)

]
(A.6)

and

L3(y) = L(y) − L1(y) − L2(y). (A.7)

We can write h0(x, y|AAB) as

h0 = 1 + xL1 + L2 + xL3 + xL3(H − h0) + L1(H − h0 − h1)/y + xyL2H. (A.8)

In a similar way we obtain the relations

h1 = xy(1 + L1 + xL2 + xL3) + xL3(H − h0 − h1) + x2y2L1H + x2yL2(H − h0) (A.9)

and

h2 = xy2(1 + xL1 + xL2 + L3) + x2y2L1(H − h0) + x2y3L3H + xyL2(H − h0 − h1).

(A.10)

On solving these four simultaneous equations for H(x, y|AAB) we see that H can be written
as H = H1/H2, where H1 and H2 are both polynomials in x, the coefficients of which are
functions of y. H1 is of degree three and H2 is of degree four. H is singular when H1 is
singular and when H2 = 0. For small x the boundary of convergence is determined by the
behaviour of H1 and is given by the line y = √

2 − 1. For larger x it is determined by the real
positive zero of H2 (which depends on y) and the boundary of convergence has a singularity
at (x∗, y∗) where x∗ = 1.802 . . . and y∗ = √

2 − 1.
The case of ABB can be treated in an exactly similar way. In this case

H = h0 + h1 + h2

1 − xy3
(A.11)



4582 M S Moghaddam et al

if |xy3| < 1,

h0 = 1 + L1 + L2 + xL3 + xL3(H − h0) + L1(H − h0 − h1)/y + xyL2H (A.12)

h1 = y(1 + L1 + xL2 + L3) + L3(H − h0 − h1) + xy2L1H + xyL2(H − h0) (A.13)

and

h2 = y2(1 + xL1 + L2 + L3) + xy3L3H + xy2L1(H − h0) + yL2(H − h0 − h1). (A.14)

The solution is very similar except that the numerator H1 is a linear function of x and the
denominator H2 is a quadratic function of x. The phase boundary has a singular point at
x∗ = 3.078 . . . , y∗ = √

2 − 1.

Repeat units of length 4

In this section we consider the repeat units AABB, AAAB and ABBB all of which have
repeat units of length 4. In this case we need to count loops separately for n divisible by 4,
and having a remainder of 1, 2 or 3 when divided by 4. Define

Lm(y) =
∑
k�0

lm+4kym+4k (A.15)

for m = 1, . . . , 4. It is easy to see that

L1(y) = [L(y) − L(−y) − iL(iy) + iL(−iy)]/4 (A.16)

L2(y) = [L(y) + L(−y) − iL(iy) − L(−iy)]/4 (A.17)

L3(y) = [L(y) − L(−y) + iL(iy) − iL(−iy)]/4 (A.18)

and

L4(y) = [L(y) + L(−y) + L(iy) + L(−iy)]/4. (A.19)

We can now set up equations relating H(x, y|AABB) and the partial generating functions
h0(x, y|AABB), h1(x, y|AABB), h2(x, y|AABB) and h3(x, y|AABB), giving

H = h0 + h1 + h2 + h3

1 − x2y4
(A.20)

if |x2y4| < 1,

h0 = 1 + x(L1 + L4) + L2 + L3 + xyL3H + xL4(H − h0)

+L1(H − h0 − h1)/y + L2(H − h0 − h1 − h2)/xy2 (A.21)

h1 = xy(1 + L1 + L2 + xL3 + xL4) + x2y2L2H + x2yL3(H − h0)

+xL4(H − h0 − h1) + L1(H − h0 − h1 − h2)/y (A.22)

h2 = xy2(1 + L1 + L4 + xL2 + xL3) + x2y3L1H + x2y2L2(H − h0)

+xyL3(H − h0 − h1) + L4(H − h0 − h1 − h2) (A.23)

and

h3 = xy3(1 + L3 + L4 + xL1 + xL2) + x2y4L4H + x2y3L1(H − h0)

+xy2L2(H − h0 − h1) + yL3(H − h0 − h1 − h2). (A.24)
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Solving these simultaneous equations we can again express H as a ratio of two polynomials
in x (whose coefficients are functions of y), the numerator being of degree three and the
denominator of degree four. To locate the singular point on the phase boundary we set
y = √

2 − 1 and set the denominator equal to zero. The singular point is at x∗ = 2.101 . . . ,

y∗ = √
2 − 1.

The repeating patterns AAAB and ABBB can be handled in a similar way. For AAAB

the equations for the partial generating functions are

H = h0 + h1 + h2 + h3

1 − x3y4
(A.25)

and

h0 = 1 + L3 + x(L1 + L2 + L4) + xyL3H + xL4(H − h0)

+L1(H − h0 − h1)/y + L2(H − h0 − h1 − h2)/xy2 (A.26)

h1 = xy + xyL2 + x2y(L1 + L3 + L4) + x2y2L2H + x2yL3(H − h0)

+xL4(H − h0 − h1) + L1(H − h0 − h1 − h2)/y (A.27)

h2 = x2y2(1 + L1 + xL2 + xL3 + xL4) + x3y3L1H + x3y2L2(H − h0)

+x2yL3(H − h0 − h1) + xL4(H − h0 − h1 − h2) (A.28)

h3 = x2y3(1 + xL1 + xL2 + xL3 + L4) + x3y4L4H + x3y3L1(H − h0)

+x2y2L2(H − h0 − h1) + xyL3(H − h0 − h1 − h2). (A.29)

The singular point is at x∗ = 1.687 . . . , y = √
2 − 1. For the ABBB pattern we have

H = h0 + h1 + h2 + h3

1 − xy4
(A.30)

and

h0 = 1 + L1 + L2 + L3 + xL4 + xyL3H + xL4(H − h0)

+L1(H − h0 − h1)/y + L2(H − h0 − h1 − h2)/y2 (A.31)

h1 = y + xyL3 + y(L1 + L2 + L4) + xy2L2H + xyL3(H − h0)

+L4(H − h0 − h1) + L1(H − h0 − h1 − h2)/y (A.32)

h2 = y2(1 + L1 + xL2 + L3 + L4) + xy3L1H + xy2L2(H − h0)

+yL3(H − h0 − h1) + L4(H − h0 − h1 − h2) (A.33)

h3 = y3(1 + xL1 + L2 + L3 + L4) + xy4L4H + xy3L1(H − h0)

+y2L2(H − h0 − h1) + yL3(H − h0 − h1 − h2). (A.34)

The singularity is at x∗ = 4.007 75 . . . , y∗ = √
2 − 1.
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